Position space renormalisation group study of shortest paths in percolation clusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L657
(http://iopscience.iop.org/0305-4470/18/11/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Position space renormalisation group study of shortest paths in percolation clusters

P Ray
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, India

Received 8 October 1984, in final form 20 May 1985

Abstract

The average length of the shortest paths along the backbone of the incipient infinite cluster is expected to diverge near the percolation threshold p_{c} as $\left|p-p_{\mathrm{c}}\right|^{-\nu_{s}}$, with ν_{s} different from the correlation length exponent ν. We have applied here position space renormalisation group (PSRG) technique to obtain ν_{s} both for square and cubic lattices and for triangular lattice in two dimensions. The results obtained ($\nu_{\mathrm{s}}=1.49$ for $d=2$ and 1.21 for $d=3$) are in very good agreement with the existing results obtained by different methods.

In the percolation problem, one generally talks of the connections or the nature of the connections in a lattice, in which bonds or sites have been removed randomly. For instance, one might want to find the probability that two sites i and j are connected through the bonds. However, apart from that, one might want to find the shortest path between the sites i and j. The mean length of all the shortest paths between all pairs of points over the backbone cluster is expected to diverge at the percolation threshold p_{c} as $\left|p-p_{\mathrm{c}}\right|^{-\nu_{\mathrm{s}}}$, with ν_{s} different from the correlation length exponent ν_{p}. The behaviour of this shortest path near p_{c} has already been studied employing different techniques. The fractal dimension of the shortest connecting paths in the backbone cluster has been studied numerically by Herrmann et al (1984), who obtained $D_{\mathrm{E}}=1.10 \pm 0.05$ and 1.35 ± 0.05 for the fractal dimensions of the shortest connecting paths in two and three dimensions respectively. These results ($D_{\mathrm{E}}=\nu_{\mathrm{s}} / \nu_{\mathrm{b}}$) are in fair agreement with the results obtained employing series expansion ($\nu_{\mathrm{s}}=1.38 \pm 0.10$ for $d=2$ and $1.18 \pm$ 0.07 for $d=3, \zeta_{\text {min }}$ of Hong and Stanley 1983a) and PSRG ($\nu_{\mathrm{s}}=1.55$ for $d=2, \zeta_{\text {min }}$ of Hong and Stanley 1983b) techniques. Here, we have applied the same psrg techniques as was used by Hong and Stanley (1983b) to obtain ν_{s} for square (both for the scale factors $b=2$ and $b=3$ and extrapolated), two-dimensional triangular and cubic lattices and the results obtained are found to be in very good agreement with the previous results.

To apply the renormalisation group technique on the bond-diluted square lattice, we chose a cell as shown in figure 1 that covers the lattice with bonds and rescales to another bond. The occupation probability p^{\prime} of a renormalised bond is obtained in terms of the occupation probability p of a bond in the original lattice and we have, for the scaling factor $b=2$,

$$
\begin{equation*}
p^{\prime}=p^{5}+5 p^{4}(1-p)+8 p^{3}(1-p)^{2}+2 p^{2}(1-p)^{3} \tag{1}
\end{equation*}
$$

Figure 1. Elementary cell used for bond percolation on a square lattice. (a) The cell for the scale factor $b=2$ and (b) the cell for the scale factor $b=3$. After renormalisation the cell becomes a vertical and a horizontal bond.
and for $b=3$

$$
\begin{align*}
& p^{\prime}=p^{13}+13 p^{12}(1-p)+78 p^{11}(1-p)^{2}+283 p^{10}(1-p)^{3}+677 p^{9}(1-p)^{4} \\
&+1078 p^{8}(1-p)^{5}+1089 p^{7}(1-p)^{6}+627 p^{6}(1-p)^{7} \\
&+209 p^{5}(1-p)^{8}+38 p^{4}(1-p)^{9}+3 p^{3}(1-p)^{10} \tag{2}
\end{align*}
$$

To find the critical behaviour of the shortest path, we associate a quantity x with the length of each bond, in terms of which for a certain bond occupation configuration, the shortest path required to traverse the cell can be determined. For $b=2$, when all the bonds are present, the shortest path to traverse the cell is $2 x$ and for $b=3$, it is $3 x$. The renormalised shortest path length x^{\prime} for the renormalised bond is thus obtained in terms of x, p, and p^{\prime} and our result for $b=2$ is

$$
\begin{equation*}
p^{\prime} x^{\prime}=2 x p^{5}+10 x p^{4}(1-p)+18 x p^{3}(1-p)^{2}+4 x p^{2}(1-p)^{3} \tag{3}
\end{equation*}
$$

and for $b=3$

$$
\begin{align*}
p^{\prime} x^{\prime}=3 x p^{13}+ & 39 x p^{12}(1-p)+234 x p^{11}(1-p)^{2}+873 x p^{10}(1-p)^{3}+2195 x p^{9}(1-p)^{4} \\
& +3696 x p^{8}(1-p)^{5}+3865 x p^{7}(1-p)^{6}+2215 x p^{6}(1-p)^{7} \\
& +711 x p^{5}(1-p)^{8}+122 x p^{4}(1-p)^{9}+9 x p^{3}(1-p)^{10} \tag{4}
\end{align*}
$$

The non-trivial percolation fixed points p^{*} found from equations (1) and (2) are listed in table 1. As expected they are the same for $b=2$ and $b=3$ (Bernasconi 1978). Linearising equations (1) and (2) around the non-trivial fixed point p^{*}, one obtains the correlation length exponent

$$
\nu_{\mathrm{b}}=\ln b /\left.\ln \left(\partial p^{\prime} / \partial p\right)\right|_{p^{*}}
$$

From equations (3) and (4), one obtains the exponent for the shortest path as

$$
\nu_{\mathrm{s}}=\ln \left(\partial x^{\prime} /\left.\partial x\right|_{p^{*}}\right) \nu_{p} / \ln b .
$$

The values of p^{*}, ν_{p} and ν_{s} for $b=2$ and $b=3$ as well as the extrapolated result using the relations (Eschbach et al 1981)

$$
\begin{aligned}
& 1 / \nu_{\mathrm{b}}=1 / \nu+a / \ln b \\
& \nu_{\mathrm{s}}=\nu^{\prime}+c / \ln b
\end{aligned}
$$

for the bond-diluted square lattice have been listed in table 1.

Table 1. Fixed points and exponents for the bond-diluted square, triangular and cubic lattices.

Lattice type	b	p^{*}	ν_{p}	ν_{x}	ν	ν^{\prime}
Square	2	$0.50{ }^{\text {a }}$	$1.43{ }^{\text {a }}$	$1.55^{\text {a }}$	$1.28^{\text {a }}$	$1.49^{\text {a }}$
		$0.50{ }^{\text {b }}$				
	3	$0.50{ }^{\text {a }}$	$1.37{ }^{\text {a }}$	$1.53{ }^{\text {a }}$	$\frac{4}{3}$ b	$1.47 \pm 0.07^{\text {c }}$
		$0.50{ }^{\text {b }}$				$1.55{ }^{\text {d }}$
Triangular	$\sqrt{3}$	$0.50{ }^{\text {a }}$	$1.13{ }^{\text {a }}$	$1.55^{\text {a }}$	$\begin{aligned} & 1.13^{a} \\ & \frac{4}{3} b \end{aligned}$	
		$0.35{ }^{\text {b }}$				
Cubic	2	$0.21{ }^{\text {a }}$	$1.02{ }^{\text {a }}$	$1.21{ }^{\text {a }}$	$1.02{ }^{\text {a }}$	$1.21{ }^{\text {a }}$
		$0.25{ }^{\text {b }}$			$0.85{ }^{\text {b }}$	$1.19 \pm 0.05^{\text {c }}$
						$1.18 \pm 0.07^{\text {d }}$

${ }^{a}$ This work.
${ }^{\mathrm{b}}$ See, e.g., Reynolds et al (1980), den Nijs (1979) and Yeomans and Stinchcombe (1979).
${ }^{\text {c }}$ See Herrmann et al (1984).
${ }^{\mathrm{d}}$ See Hong and Stanley (1983a, b).

For the two-dimensional triangular lattice, the cell chosen (Yeomans and Stinchcombe 1979) has been shown in figure 2. In this case we have obtained for $b=\sqrt{3}$

$$
\begin{equation*}
p^{\prime}=p^{5}+5 p^{4}(1-p)+8 p^{3}(1-p)^{2}+2 p^{2}(1-p)^{3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{\prime} x^{\prime}=2 x p^{5}+10 x p^{4}(1-p)+18 x p^{3}(1-p)^{2}+4 x p^{2}(1-p)^{3} . \tag{6}
\end{equation*}
$$

The results have been listed in table 1. The value of ν_{s} is found to be in reasonably good agreement with the previous results (for the next cell, for which $b=2 \sqrt{3}$, we have obtained $p^{*}=0.598, \nu_{\mathrm{b}}=1.692$ and $\nu_{\mathrm{s}}=2.135$, which deviates greatly from the expected convergence and has not, therefore, been used for extrapolation).

In the case of the three-dimensional basic cell for which $b=2$, we have

$$
\begin{gather*}
p^{\prime}=p^{12}+12 p^{11}(1-p)+66 p^{10}(1-p)^{2}+220 p^{9}(1-p)^{3}+493 p^{8}(1-p)^{4} \\
+776 p^{7}(1-p)^{5}+856 p^{6}(1-p)^{6}+616 p^{5}(1-p)^{7} \\
 \tag{7}\\
+238 p^{4}(1-p)^{8}+48 p^{3}(1-p)^{9}+4 p^{2}(1-p)^{10}
\end{gather*}
$$

Figure 2. Elementary cell used for bond percolation on a triangular lattice. The scale factor $b=\sqrt{3}$. After renormalisation the cell becomes a vertical bond.

Figure 3. Elementary cell used for bond percolation on a cubic lattice. The scale factor $b=2$. After renormalisation the cell becomes three mutually perpendicular bonds.
and

$$
\begin{align*}
p^{\prime} x^{\prime}=2 x p^{12}+ & 24 x p^{11}(1-p)+132 x p^{10}(1-p)^{2}+440 x p^{9}(1-p)^{3}+1000 x p^{8}(1-p)^{4} \\
& +1632 x p^{7}(1-p)^{5}+1912 x p^{6}(1-p)^{6}+1464 x p^{5}(1-p)^{7} \\
& +548 x p^{4}(1-p)^{8}+104 x p^{3}(1-p)^{9}+8 x p^{2}(1-p)^{10} . \tag{8}
\end{align*}
$$

The values of p^{*}, ν_{b} and ν_{s} obtained from these two relations have been given in table 1.

In table $1, \nu_{\mathrm{s}}$ has been compared with the $\zeta_{\text {min }}$ of Hong and Stanley and with $D_{\mathrm{E}} \nu_{\mathrm{b}}$ obtained from Herrmann et al (1984), and found to agree very well (both in two and three dimensions) with these results.

I am grateful to Dr B K Chakrabarti and Mr A K Roy for some useful discussions.

References

Bernasconi J 1978 Phys. Rev. B 182185
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
Eschbach P D, Stauffer D and Herrmann H J 1981 Phys. Rev. B 23422
Herrmann H J, Hong D C and Stanley H E 1984 J. Phys. A: Math. Gen. 17 L261
Hong D C and Stanley H E 1983a J. Phys. A: Math. Gen. 16 L475

- 1983b J. Phys. A: Math. Gen. 16 L525

Reynolds P J, Stanley H E and Klein W 1980 Phys. Rev. B 211223
Yeomans J M and Stinchcombe R B 1979 J. Phys. C: Solid State Phys. 12347

