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LElTER TO THE EDITOR 

Position space renormalisation group study of shortest paths in 
percolation clusters 

P Ray 
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, 
India 

Received 8 October 1984, in final form 20 May 1985 

Abstract. The average length of the shortest paths along the backbone of the incipient 
infinite cluster is expected to diverge near the percolation threshold p c  as ( p  -pcl-”s, with 
v, different from the correlation length exponent U. We have applied here position space 
renormalisation group (PSRG) technique to obtain v, both for square and cubic lattices 
and for triangular lattice in two dimensions. The results obtained ( v, = 1.49 for d = 2 and 
1.21 for d = 3 )  are in very good agreement with the existing results obtained by different 
methods. 

In the percolation problem, one generally talks of the connections or the nature of the 
connections in a lattice, in which bonds or sites have been removed randomly. For 
instance, one might want to find the probability that two sites i and j are connected 
through the bonds. However, apart from that, one might want to find the shortest path 
between the sites i and j .  The mean length of all the shortest paths between all pairs 
of points over the backbone cluster is expected to diverge at the percolation threshold 
p c  as Ip - p C I - ’ s ,  with v, different from the correlation length exponent vp The behaviour 
of this shortest path near p c  has already been studied employing different techniques. 
The fractal dimension of the shortest connecting paths in the backbone cluster has 
been studied numerically by Herrmann et al (1984), who obtained DE= l. lOi0.05 
and 1.35 *0.05 for the fractal dimensions of the shortest connecting paths in two and 
three dimensions respectively. These results (DE = v,/ vb) are in fair agreement with 
the results obtained employing series expansion (v, = 1.3810.10 for d = 2 and 1.18* 
0.07 for d = 3, Smin of Hong and Stanley 1983a) and PSRG ( v s =  1.55 for d =2,  jmin of 
Hong and Stanley 1983b) techniques. Here, we have applied the same PSRG techniques 
as was used by Hong and Stanley (1983b) to obtain v, for square (both for the scale 
factors b = 2 and b = 3 and extrapolated), two-dimensional triangular and cubic lattices 
and the results obtained are found to be in very good agreement with the previous results. 

To apply the renormalisation group technique on the bond-diluted square lattice, 
we chose a cell as shown in figure 1 that covers the lattice with bonds and rescales 
to another bond. The occupation probability p ’  of a renormalised bond is obtained 
in terms of the occupation probability p of a bond in the original lattice and we have, 
for the scaling factor b = 2, 

p ’ = p 5 +  5p4( 1 - p )  + 8p3(  1 - p ) ’ +  2p2( 1 - P ) ~  
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Figure 1. Elementary cell used for bond percolation on a square lattice. ( a )  The cell for 
the scale factor b = 2 and ( b )  the cell for the scale factor b = 3. After renormalisation the 
cell becomes a vertical and a horizontal bond. 

and for b = 3 

p ' = p I 3 +  13p1'(1 -p)+78p11(l-p)2+283p10(1-p)3+677p9(1 - P ) ~  

+ 1078p8(1 - p ) ' +  1089p7(1 - ~ ) ~ + 6 2 7 p ~ ( 1  - P ) ~  

+209p5(1-p)8+38p4(1 - ~ ) ~ + 3 p ~ ( 1  -p)'O. (2) 

To find the critical behaviour of the shortest path, we associate a quantity x with the 
length of each bond, in terms of which for a certain bond occupation configuration, 
the shortest path required to traverse the cell can be determined. For b = 2, when all 
the bonds are present, the shortest path to traverse the cell is 2x and for b = 3, it is 
3x. The renormalised shortest path length x' for the renormalised bond is thus obtained 
in terms of x, p ,  and p '  and our result for b = 2 is 

p'x'= 2xp5+ 10xp4( 1 - p )  + 18xp3( 1 - ~ ) ~ + 4 x p ' (  1 - p ) 3  (3) 
and for b = 3 

p ' x ' = 3 ~ p ' ~ + 3 9 x p ' ~ ( l  -p)+234xp1'(l -p)2+873~p'0(1-p)3+2195~p9(1 - P ) ~  

+3696xp8( 1 -p)'+3865xp7(1 - ~ ) ~ + 2 2 1 5 x p ~ ( l  

+ 71 lxp'( 1 - P ) ~ +  122xp4( 1 - ~ ) ~ + 9 x p ~ (  1 -p) 'O.  (4) 

The non-trivial percolation fixed points p* found from equations (1) and (2) are listed 
in table 1. As expected they are the same for b = 2 and b = 3 (Bernasconi 1978). 
Linearising equations ( 1 )  and (2) around the non-trivial fixed point p * ,  one obtains 
the correlation length exponent 

vb = In b/ln(ap'/ap)l,*. 

From equations (3) and (4), one obtains the exponent for the shortest path as 

v, = In(ax'/~xl,*)v,/ln b. 

The values of p * ,  vp and U, for b = 2 and b = 3 as well as the extrapolated result using 
the relations (Eschbach er ul 1981) 

1 / V b =  1/V+U/ln b 

v, = v'+ c/ln b 

for the bond-diluted square lattice have been listed in table 1. 
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Table 1. Fixed points and exponents for the bond-diluted square, triangular and cubic 
lattices. 

Lattice type b P* VP V x  V VI 

OSO" 1.43' 1.55' 1,28a 1,49a 

1.47 f 0.07' 
0.50b 

1.55d OS'" 1.37" 1.53" ' O S O b  

4 b  Square 

1.13a 
0'50a 1.13" 1.55a t b  
0.35b 

Triangular 

Cubic 1.02" 1.21" 
0.85b 1.19*0.05' o.21a 1.02" 1.218 

0.25b 
1.18 f 0.07d 

a This work. 

' See Herrmann et a1 (1984). 
See, e.g., Reynolds er a1 (1980), den Nijs (1979) and Yeomans and Stinchcombe (1979). 

See Hong and Stanley (1983a, b). 

For the two-dimensional triangular lattice, the cell chosen (Yeomans and Stinch- 
combe 1979) has been shown in figure 2. In this case we have obtained for b = h 

p ' = p 5  + 5p4( 1 - p )  + 8p3( 1 - p ) ' +  2p2( 1 - P ) ~  

p'x'=2xp5+ 10xp4(l - p ) +  18xp3(1 -p)'+4xp2(1 - P ) ~ .  

( 5 )  

(6) 

and 

The results have been listed in table 1 .  The value of U, is found to be in Easonably 
good agreement with the previous results (for the next cell, for which b = 243, we have 
obtained p* = 0.598, v b  = 1.692 and U, = 2.135, which deviates greatly from the expected 
convergence and has not, therefore, been used for extrapolation). 

p ' = p ' ' +  12p"(l -p)+66p1'(1 -p)2+220p9(l-p)3+493pS(1 - P ) ~  

In the case of the three-dimensional basic cell for which b = 2, we have 

+776p7(1 -p)'+856p6(1 -p)6+616p5(1 - p ) 7  

V 
Figure 2. Elementary cell used for bond percolation 
on a triangular lattice. The scale factor b = h. After 
renormalisation the cell becomes a vertical bond. 

Figure 3. Elementary cell used for bond percolation 
on a cubic lattice. The scale factor b = 2. After 
renormalisation the cell becomes three mutually per- 
pendicular bonds. 
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and 

p’x’= 2xp1* + 24xp1’( 1 - p )  + 132xpI0( 1 - P ) ~  + 44Oxp9( 1 - p ) 3  + 1OOOxps( 1 - P ) ~  

+ 1632xp7(1 -p)’+1912xp6(1 -p)6+1464~p’(1 - p ) ’  

+548xp4(1 - p ) ’ +  1O4xp3(1 - ~ ) ~ + 8 x p ’ ( l  - p ) I o .  (8) 

The values of p * ,  vb and v, obtained from these two relations have been given in table 
1 .  

In table 1 ,  v, has been compared with the fmi, of Hong and Stanley and with DEvb 
obtained from Herrmann et al (1984), and found to agree very well (both in two and 
three dimensions) with these results. 

I am grateful to Dr B K Chakrabarti and Mr A K Roy for some useful discussions. 
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